
A first principles theory of magnetocrystalline anisotropy in metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 3947

(http://iopscience.iop.org/0953-8984/1/25/007)

Download details:

IP Address: 171.66.16.93

The article was downloaded on 10/05/2010 at 18:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 3947-3955. Printed in the UK 

A first-principles theory of magnetocrystalline 
anisotropy in metals 

P Stranget$, H Ebertt§, J B Staunton11 and B L Gyorffy? 
i Physics Department, Bristol University, Tyndall Avenue, Bristol BS8 lTL, UK 
11 Physics Department, Warwick University, Coventry, West Midlands, UK 

Received 4 November 1988, in final form 23 January 1989 

Abstract. A first-principles theory of the zero-temperature magnetocrystalline anisotropy 
in metals is discussed. It is based on a relativistic spin-polarised multiple-scattering theory. 
The magnetic moment can point along any direction with respect to the crystal lattice and 
the total energy iscalculated. The difference between totalenergies for two different moment 
directions is the magnetocrystalline anisotropy energy. We show that this energy difference 
can be written as the difference in single-particle energies for the same charge density. The 
theory is illustrated with a calculation of the anisotropy in energy and spin contribution to 
the magnetic moment in nickel. It is found that the theory gives good qualitative agreement 
with experiment in this case. Numerical difficulties involved in the calculation are discussed. 

1. Introduction 

Compared with a non-relativistic description, relativistic quantum mechanics of elec- 
trons in condensed matter has a number of qualitatively new features. One of these is 
the coupling of the spin to the orbital degrees of freedom. Evidently its consequences 
are particularly striking in spin-polarised systems of itinerant electrons such as occurs in 
metallic magnets. For instance, it is this coupling that gives rise to the magnetocrystalline 
anisotropy energy (Landau et a1 1984, March et a1 1984). Also, as has been shown by 
Staunton et a1 (1988), a relativistic treatment of the RKKY interaction leads to anisotropic 
effects. Recently, this interesting subject has been attracting considerable theoretical 
attention. Feder (1985) (see also references therein), Strange et a1 (1984, 1989a) and 
Schadler et aZ(1987) have all developed theories of the electronic structure of solids in 
which both relativity and spin polarisation are treated on an equal footing. 

Fritsche et a1 (1987) have used an apparently equivalent theory to calculate the 
magnetocrystalline anisotropy energy in nickel and iron. They assumed the difference 
in total energies for the moment pointing in two different directions in the unit cell can 
be written as the difference in single-electron energies. Their results were of the correct 
order of magnitude, but gave the wrong sign for iron. 

In this paper we report a calculation of the magnetocrystalline anisotropy energy and 
the anisotropy in the magnitude of the magnetic moment when the moment points along 
$ Present address: Neutron Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 
OX11 OQX, UK. 
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the (001) and the (111) axes in nickel. This calculation is performed using a relativistic 
spin-polarised scattering theory (Strange et a1 1989a). We examine the origin of the 
anisotropy within the formalism. The results are encouraging, having the correct sign 
and order of magnitude, however the numerical uncertainties in the calculation lead to 
large uncertainties in the final answer. 

2. Formalism 

It is now well established that the equilibrium properties of many-electron systems can 
be accurately described by density functional theory (Hohenberg and Kohn 1964, Kohn 
and Sham 1965). In this theory the complicated many-body problem is reduced to a set 
of effective single-particle Schrodinger-like equations and the many-body effects are 
treated by way of some local approximation (Hedin and Lundqvist 1971). More recently 
this theory has been generalised in order to make it applicable to systems in which 
relativistic effects play an important role in determining the systems’ properties (Raja- 
gopal 1978, Ramana and Rajagopal 1979, McDonald and Vosko 1979). In particular 
McDonald and Vosko (1979) developed the theory for a many-electron system in the 
presence of an external potential and a spin-only magnetic field (neglecting diamagnetic 
effects). Their equations can be written as (Strange et a1 1984) 

{-ihca V + pmc2 + zVeff[n(r), m(r)] 

+ p a  * B“f [n( r ) ,  m(r)] - E I ) ( p i ( T )  = 0 

i Vext(r) + 6EXc/6n(r)  + e2  (n(r’) / lr  - r ’ i )  d3r’  I 
Beff(n(r), m(r) )  = (eh/2mc)(Bex‘(r) + 6EXc/6m(r)).  (2.5) 

Here Vext(r) is the external potential, E,, is the relativistic exchange correlation energy 
which is a functional of n(r) and m(r). q i  is a 4-spinor7 Bext is a fictional magnetic field 
coupling to the spin of the electron only. LY and p are the standard Dirac matrices and 
a are the 4 X 4 Pauli matrices. All other symbols have their usual meanings. McDonald 
and Vosko (1979) write an expression for the total energy functional in the nonmagnetic 
case. It is a close analogy to the non-relativistic expression and is easily generalised to 
the spin-polarised case 

E[n(r) ,  m(r)]  = - he2 (n(r)n(r’)/ir - r’i)  d 3 r d 3 r ’  
occ 

1 

+ m(r)dE,,[n(r),  m(r)]/6m(r) d ’ r .  I 
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It has been shown that an approximate but reliable method of finding the total energy 
difference between two systems with ground-state charge densities which differ by a 
small amount 6n(r) is as follows (Mackintosh et aZl980). One does a fully self-consistent 
density functional calculation in one case. The resulting charge density is used to perform 
a single iteration in the second case and the difference in total energy is equal to the 
difference in the single-particle energies to order 6n(r)2. This exploits the stationarity of 
the total energy with respect to changes in the charge density. It is trivial to generalise 
this argument to the spin-polarised case as follows. Consider n"l(r) and m"'(r) to be the 
self-consistent charge and magnetisation densities when the magnetic moment points 
along the (001) direction. Then we write 

n (r)  = n"' (r)  + 6n(r) (2.7) 

m y r )  = "'(r) + 6m(r). (2.8) 

and 

Then we write the difference in total energies for the moment pointing along (001) and 
the moment along (1 11) as 

AE = E1ll[nool(r) + 6n(r), moo'(r) + 6m(r)]  - Eml[nW1(r),  m"(r)] 

= E ' ' ' [non' ( r) , m Ool (r)  ] + 6n (r)  6 E ' ' ' [ n ' ' (r)  , m ' ' ' (r)  ] /6n ( r) 

+ 6m ( r )  6 E  l1 ' [ n ' ' ' ( r )  , m ' ' ' ( r )  ]/am ( r )  

+ HOT - E"'[n"(r), m"'(r)]. 

HOT means terms of order S w ~ ( r ) ~ ,  6n(r)2 and 6n(r)6m(r) or higher and where we have 
resubstituted for n"'(r) and mool(r) in the second and third term on the right-hand 
side. Now 6E1"[n"'(r), m1"(r)]/6n(r) and 6E'"[n'"(r), m"'(r)]/Sm(r) are both zero. 
Therefore we can neglect all terms on the right-hand side of (2.9) except the first and 
last ones. When we place the same charge and magnetisation density in both these 
functionals and subtract, only the single-particle energy terms of equation (2.6) remain. 
Finally we have 

AE = 2 E;" - E?'.  
i 1 

(2.10) 

We have shown that we can identify the difference in single-electron energies cal- 
culated in this way with the magnetocrystalline anisotropy energy to order Sn(r)2, 
6m(r)2. Such an approach has already been used by Strange et aZ(1988b) to calculate the 
anisotropy energy in tetragonal iron. 

3. Scattering theory 

Feder et a1 (1985) and Strange et aZ(l984) showed how to solve equation (2.1). They 
used a single-site, scattering theory approach to calculate the scattering t-matrices. The 
t-matrices calculated this way are off-diagonal in spin space and this is all that is required 
to describe magnetic anisotropies. The properties of these t-matrices were explored in 
detail by Strange et aZ(l984). 

Strange eta1 (1989a) have also derived a relativistic spin-polarised multiple-scattering 
theory for solving the approximate relativistic spin-polarised density functional equation 
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(2.1) for electrons on a crystal lattice. They derive an expression for the scattering Green 
function G(r, r ,  E )  and discuss how to calculate observables therefrom. The salient 
equations from their paper are that the density of states is given by 

n(E) = -n-l Im Tr G(r, r, E )  d 3r (3.1) i 
and that the spin magnetic moment is 

m,(r) = -n-l Im Tr p a G ( r ,  r ,  E )  d E  ioEF 
and also that the orbital contribution to the magnetic moment is 

m,(r) = -n-’ Im Tr pl ,G(r ,  r ,  E) d E  

( 3 . 2 ~ )  

(3.2b) 

E, is the z-component of the 4 X 4 matrix vector E, = l4 8 E with E the conventional angular 
momentum operator. The relativistic scattering Green function is given by 

G(r, r’ ,  E )  = Z i ( r ) t K p K ~ p ~  (E)Z$(r’)  - Zg(r)Jt(r’) .  (3.3) 
K , u K ’ ~ ’  w 

Z i ( r )  andJ t ( r )  are discussed in detail by Strange etuZ(1989a). They are the regular and 
irregular solutions of the Kohn-Sham-Dirac equation respectively. K and p are the usual 
relativistic quantum numbers (Rose 1966). If all the scatters are equivalent and placed 
on a periodic lattice it can be shown that each element of the 7-matrix can be written as 

where zKpKtp , (E)  is an element of the single-site scattering t-matrix, gKpK,p,(q, E )  are the 
usual KKR structure constants rotated into a representation in which they can be written 
in terms of the relativistic quantum numbers. In the non-relativistic case 

g/mr,z(R, - R I ,  E )  = 4nE1/2 i’-”+’ (3.6) 

where h‘ is a spherical Hankel function, Y is a spherical harmonic and Cfi ,  are the 
Clebsch-Gordon coefficients. If the calculations were all performed on the real axis the 
second term in the Green function would be zero. 

The t-matrices are always calculated with their magnetic moments pointing along a 
local z axis, corresponding to the z axis of the crystal. However, they can be turned to 
any direction using the rotation matrices. 

Substituting the rotated t-matrices into (3.4) and performing the Brillouin zone 
integral gives a new t-matrix. The direction of the moment affects the point group 
symmetry of the crystal and the Brillouin zone integration must be done in different 
irreducible segments of the zone depending on the direction of the moment. For the 
(001) direction it is &ths of the FCC zone and for the (111) direction it is h ths .  For an 
arbitrary direction it is % ths. 

Cfi, i’” hl.(E’/21R, - R,I)YT(R, - R , )  
L’ 



Theory of magnetocrystalline anisotropy 3951 

Care must be taken to ensure that the new z-matrix and the Zg(r)  are in the same 
frame when combined to find the Green function. The density of states, magnetic 
moment and single-electron energies can then be calculated from the above formulae. 

4. Calculation and results 

We consider nickel on an FCC lattice. The nickel ions are defined by a potential found 
from a self-consistent non-relativistic electronic structure calculation (Moruzzi et a1 
1978). As nickel is a fairly light element, this should be a good approximation. The 
quantities on the right-hand side of equation (3.4) can be calculated straightforwardly. 
The Brillouin zone integrals were performed using a generalisation of the prism method 
(Stocks et a1 1979). 

The density of states and magnetic moment were calculated for the moment pointing 
along (001) and then the calculation was repeated for the moment along (111). The 
energy integrals were done on a rectangular box contour in the complex plane with 
maximum imaginary energy 50 mRyd. 

At most stages of the calculation the numerical methods can be checked to ensure 
that sufficient accuracy is obtained to see the effects we are trying to describe. Numerical 
uncertainty was introduced into the calculation by the Brillouin zone integral. To gain 
some insight into this, the calculation was performed using 6, 10,21, and 36 directions 
in each h t h  of the zone. The Fermi energy can be found from 

n = loEF n(E)  d E 

and the single-electron energies are given by 

E ,  = CF En(E) d E. (4.2) 

To find the anisotropy energy, we are taking the difference of two large numbers to find 
a small one. This can only be done by integrating thedifference round the energy 
contour. When we return to the real axis there is a small difference in Fermi energy for 
the two directions. The region between the two Fermi energies is assumed to have a 
constant density of states. 

Figure 1 shows the relativistic energy band structure of nickel along the r-X(OOl) 
direction or the moment along (001) in the unit cell. These are very similar to previous 
results (Wang and Callaway 1977, Moruzzi et a1 1978). Comparison of their results 
with ours shows that relativity introduces some small changes in band widths and lifts 
degeneracies at points of high symmetry. There is also some gross movement in the 
bands due to the mass-velocity and Darwin effects in the Hamiltonian. 

Figures 2 and 3 are magnified views of the energy bands for nickel with the moment 
pointing along (001) in the r-X(OOl) and the I'-X(lOO) directions in the Brillouin zone, 
respectively. We see the major effect of rotating the moment is to prevent/allow band 
crossings and to alter some separations between bands. This can be understood on the 
basis of the U - B term in the Hamiltonian. When the moment rotates the scalar product 
varies as a cosine function. Figure 4 and figure 5 are for the same directions in the 
Brillouin zone as figure 2 and figure 3 but with the moment pointing along (111) in the 
unit cell. The same effects are visible. The bands correspond very well to those shown 
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0.75 1 

. . . . ' ' . " "  . .  : :.. . . . . . . . . . I  

Figure 1. The relativistic spin-polarised band 
structure of nickel along r-X(O01) for the mag- 
netic moment pointing along (001). 

. . .  0.60 f 

0.46 1 1 
Figure 2. A magnified view just below the Fermi 
energy of the relativistic spin-polarised band 
structufe of nickel along r-X(O01) for the mag- 
netic moment pointing along (001). 

.: . . -  
. .  0.60 

0.46 1 
Figure 3. A magnified view just below the Fermi 
energy of the relativistic spin-polarised band 
structure of nickel along r-X(lO0) for the mag- 
netic moment pointing along (001). 

by Ebert et al (1988) calculated using the recently derived relativistic spin-polarised 
LMTO method. The density of states has been found on a complex path; it is not very 
meaningful in itself, and so has not been plotted. 

Table 1 shows a full set of results including the orbital contribution to the magnetic 
moment and the value of the anisotropy in m and E. The tabulated values are those 
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0.46 I 
Figure 4. A magnified view just below the Fermi 
energy of the relativistic spin-polarised band 
structure of nickel along r-X(O01) for the mag- 
netic moment pointing along (111). 

.;. . .  . . .  

0.46 I 
Figure 5.  A magnified view just below the Fermi 
energy of the relativistic spin-polarised band 
structure of nickel along r-X(l00) for the mag- 
netic moment pointing along (111). 

Table 1. Table showing the spin and orbital contributions to the magnetic moment of nickel, 
the anisotropy in the single-electron energies and the spin contribution to the magnetic 
moment. 

Magnetic moments 

Spin Orbital Total e’ - F”’ mcQ1-mlll 

(units of pg) (10-6 e<) (units of pB) 

Theoretical 0.598 0.046 0.644 10.5 * 7.0 1.4 * 0.5 

Experimental - - 0.616 2.7 1.2 

calculated when the Brillouin zone integral was performed with 36 directions per b th 
of the zone. The errors indicated are estimated on the basis of the calculations using 10 
and 21 directions in the integration. To obtain a numerically more precise value of the 
difference in single-electron energies would require even more precise evaluation of the 
Brillouin zone integral and the inclusion of higher values of the Z-quantum number in 
the calculation. This is beyond present-day computer facilities and grants. 

5. Discussion 

In this section we want to examine the origin of the anisotropy in the formalism of 
relativistic spin-polarised scattering theory. As a consequence of this we should also 
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discover which electrons in nickel are predominantly responsible for the magnetic 
anisotropy. 

If we consider equations (3.1) to (3.6), the only place where a direction with respect 
to the crystal lattice occurs is in the spherical harmonics in the expression for g(r,  E ) .  
Let us take a factor of t - l  outside the square brackets of (3.4). We can expand what 
remains as a binomial series. This leads to an infinite series of terms each of which can 
be written (tg)" (ignoring quantum numbers), and this term includes all n-site scattering 
processes. We can then substitute back into (3.3) and (3.1). In the non-relativistic case, 
the dependence of the t-matrices and the radial part of 2 on the quantum number m 
disappears and they can be taken outside the sum over the quantum number m in (3.3). 
We are then left with sums over products of Clebsch-Gordon coefficients and spherical 
harmonics. From simple trigonometric relations the directional dependence of glj(r, E )  
then cancels for all n. 

In the relativistic case the t-matrices and the Z $ ( r ,  E )  cannot be taken outside the 
m-summation, i.e. the symmetry which allowed cancellation in the non-relativistic case 
has been broken. Hence magnetocrystalline anisotropy is observed. The difference in 
single-electron energies for the moment pointing in different directions comes from the 
fact that when the off-diagonal t-matrix is rotated, different elements of the t-matrix 
become dominant and hence the symmetry is broken in different ways for each direction 
of the moment. The most fundamental reason this occurs in a relativistic theory and not 
in a non-relativistic theory is that in the relativistic case only total angular momentum is 
conserved, spin and orbital angular momentum not separately being conserved. In the 
non-relativistic case they are conserved separately. 

If we examine the origin of A E  further by decomposing it by an quantum number I 
we find that the d electrons favour alignment along (111) but the s-p electrons favour 
the (001) direction. The d electrons dominate because they have the largest contribution 
to the density of states around the Fermi energy. 

The conclusion to be drawn from this work is that the magnetocrystalline anisotropy 
energy is given with the correct sign and order of magnitude by the difference in single- 
electron energies. Which direction will be the axis of easy magnetisation will depend on 
the details of electronic structure and the symmetry of the crystal structure. The for- 
malism we have developed may be regarded as generating t-matrices which are non- 
spherical in spin space. Thus one's physical intuition is supported in noting it is this non- 
sphericity that is responsible for the anisotropy. 

The size of the anisotropy energy is an order of magnitude smaller than the single- 
particle energies themselves, However, we can still reproduce the experimental results 
to within an order of magnitude. If the lattice were not cubic the magnetocrystalline 
anisotropy energy would be expected to be much larger and we should be able to 
calculate anisotropy energies fairly straightforwardly. This leads to the hope that one 
could predict flips in the axis of easy magnetisation for non-cubic structures. Work is in 
progress on this topic (Strange et a1 1989b). 
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